La ganancia de potencia (o simplemente ganancia) es una medida sin unidades que combina la eficiencia de una antena ϵ a n t e n a {\displaystyle \epsilon _{antena}}
y la directividad D: G = ϵ a n t e n n a ⋅ D . {\displaystyle G=\epsilon _{antena}\cdot D.}
Las nociones de eficiencia y directividad dependen de lo siguiente.
EficienciaEditar
La eficiencia ϵ a n t e n n a {\displaystyle \epsilon _{antena}}
de una antena es la potencia total radiada P o {{displaystyle P_{o}}
dividida por la potencia de entrada en el punto de alimentación ϵ a n t e n a = P o P i n {\displaystyle \epsilon _{antena}={P_{o} |sobre P_{in}}
Una antena transmisora es alimentada por una línea de alimentación, una línea de transmisión que conecta la antena a un transmisor de radio. La potencia de entrada P i n {\displaystyle P_{in}}
a la antena se define típicamente como la potencia suministrada a los terminales de la antena (el punto de alimentación), por lo que las pérdidas de potencia de la antena no incluyen la potencia perdida debido al calentamiento por joule en la línea de alimentación y las reflexiones hacia atrás en la línea de alimentación debido a los desajustes de impedancia entre la antena y la línea.
El teorema de la reciprocidad electromagnética garantiza que las propiedades eléctricas de una antena, como la eficiencia, la directividad y la ganancia, son las mismas cuando la antena se utiliza para recibir que cuando transmite.
DirectividadEditar
La directividad de una antena está determinada por su diagrama de radiación, la forma en que la potencia radiada se distribuye con la dirección en tres dimensiones. Todas las antenas son direccionales en mayor o menor medida, lo que significa que irradian más potencia en algunas direcciones que en otras. La dirección se especifica aquí en coordenadas esféricas ( θ , ϕ ) {\displaystyle (\theta ,\phi )}
, donde θ {\displaystyle \theta }
es la altitud o el ángulo sobre un plano de referencia especificado (como el suelo), mientras que ϕ {\displaystyle \phi }
es el acimut como el ángulo entre la proyección de la dirección dada sobre el plano de referencia y una dirección de referencia especificada (como el norte o el este) en ese plano con signo especificado (en el sentido de las agujas del reloj o en sentido contrario).
La distribución de la potencia de salida en función de las posibles direcciones ( θ , ϕ ) {\displaystyle (\theta ,\phi )}
viene dada por su intensidad de radiación U ( θ , ϕ ) {\displaystyle U(\theta ,\phi )}
(en unidades del SI: vatios por estereorradián, W⋅sr-1). La potencia de salida se obtiene a partir de la intensidad de la radiación, integrando esta última sobre todos los ángulos sólidos d Ω = cos θ d θ d ϕ {\displaystyle d\Omega =\cos \theta \\theta \phi }
: P o = ∫ – π π ∫ – π / 2 π / 2 U ( θ , ϕ ) d Ω = ∫ – π π ∫ – π / 2 π / 2 U ( θ , ϕ ) cos θ d θ d ϕ . {\displaystyle P_{o}=int _{-\pi }^{\pi }int _{-\pi /2}^{\pi /2}U(\theta ,\phi ),dOmega =int _{-\pi }^{\pi }int _{-\pi /2}^{\pi /2}U(\theta ,\phi )cos \theta ,d\theta \phi .}
La intensidad media de la radiación U ¯ {\displaystyle {\\año}}
viene dada, por tanto, por U ¯ = P o 4 π {\displaystyle {\overline {U}}={frac {P_{o}}{4\pi }~~}
ya que hay 4π estereorradianes en una esfera = ϵ a n t e n n a ⋅ P i n 4 π {\displaystyle ={frac {\epsilon _{antenna}\cdot P_{in}{4\pi }}
utilizando la primera fórmula para P o {\displaystyle P_{o}}
.
La ganancia directiva o directividad D ( θ , ϕ ) {\displaystyle D(\theta ,\phi )}
de una antena en una dirección determinada es la relación de su intensidad de radiación U ( θ , ϕ ) {\displaystyle U(\theta ,\phi )}
en esa dirección a su intensidad de radiación media U ¯ {\displaystyle {\overline {U}}
. Es decir, D ( θ , ϕ ) = U ( θ , ϕ ) U ¯ . {\displaystyle D(\theta ,\phi )={frac {U(\theta ,\phi )}{overline {U}}.}
Una antena isotrópica, es decir, con la misma intensidad de radiación en todas las direcciones, tiene por tanto directividad, D = 1, en todas las direcciones independientemente de su eficiencia. En general, las directividades máxima, mínima y media de cualquier antena son siempre al menos 1, como máximo 1 y exactamente 1. Para el dipolo de media onda los valores respectivos son 1,64 (2,15 dB), 0 y 1.
Cuando la directividad D
de una antena se da independientemente de la dirección se refiere a su máxima directividad en cualquier dirección, a saber, D = max θ , ϕ D ( θ , ϕ ) . {\displaystyle D=\max _{theta ,\phi }D(\theta ,\phi ).}
GainEdit
La ganancia de potencia o simplemente ganancia G ( θ , ϕ ) {\displaystyle G(\theta ,\phi )}
de una antena en una dirección determinada tiene en cuenta la eficiencia definiéndose como la relación de su intensidad de radiación U ( θ , ϕ ) {\displaystyle U(\theta ,\phi )}
en esa dirección a la intensidad de radiación media de una antena perfectamente eficiente. Como esta última es igual a P i n / 4 π {\displaystyle P_{in}/4\pi }
, viene dada, por tanto, por G ( θ , ϕ ) = U ( θ , ϕ ) P i n / 4 π {\displaystyle G(\theta ,\phi )={frac {U(\theta ,\phi )}{P_{in}/4\pi }}.
= ϵ a n t e n a ⋅ U ( θ , ϕ ) U ¯ {\displaystyle =\epsilon _{antenna}\cdot {\frac {U(\theta ,\phi )} {\overline {U}}}}
utilizando la segunda ecuación para U ¯ {\displaystyle {\overline {U}}
= ϵ a n t e n a ⋅ D ( θ , ϕ ) {\displaystyle =\epsilon _{antenna}\cdot D(\theta ,\phi )}
utilizando la ecuación para D ( θ , ϕ ) . {\displaystyle D(\theta ,\phi ).}
Al igual que con la directividad, cuando la ganancia G {\displaystyle G}
de una antena se da independientemente de la dirección, se refiere a su máxima ganancia en cualquier dirección. Dado que la única diferencia entre la ganancia y la directividad en cualquier dirección es un factor constante de ϵ a n t e n a {\displaystyle \epsilon _{antena}}
independiente de θ {\displaystyle \theta }
y ϕ {\displaystyle \phi }
, obtenemos la fórmula fundamental de esta sección: G = ϵ a n t e n n a ⋅ D . {\displaystyle G=\epsilon _{antenna}\cdot D.}
ResumenEditar
Si sólo una cierta porción de la potencia eléctrica recibida del transmisor es realmente radiada por la antena (es decir, menos del 100% de eficiencia), entonces la ganancia directiva compara la potencia radiada en una dirección determinada con esa potencia reducida (en lugar de la potencia total recibida), ignorando la ineficiencia. Por lo tanto, la directividad es la máxima ganancia directiva cuando se toma en todas las direcciones, y siempre es al menos 1. Por otro lado, la ganancia de potencia tiene en cuenta la menor eficiencia al comparar la potencia radiada en una dirección determinada con la potencia real que la antena recibe del transmisor, lo que la convierte en una cifra de mérito más útil para la contribución de la antena a la capacidad de un transmisor para enviar una onda de radio hacia un receptor. En todas las direcciones, la ganancia de potencia de una antena isotrópica es igual a la eficiencia y, por lo tanto, es siempre como máximo 1, aunque puede e idealmente debería ser superior a 1 para una antena direccional.
Nótese que en el caso de un desajuste de impedancia, Pin se calcularía como la potencia incidente de la línea de transmisión menos la potencia reflejada. O, de forma equivalente, en términos de la tensión eficaz V en los terminales de la antena:
P i n = V 2 ⋅ Re { 1 Z i n } {\displaystyle P_{in}=V^{2}\cdot {\text{Re}}left\lbrace {\frac {1}{Z_{in}}right\rbrace }