Postat pe 29 noiembrie 2018 de Maximilian Siebert
Heterogenitatea nu este ceva de care să vă fie frică, înseamnă doar că există variabilitate în datele dvs. Astfel, dacă cineva reunește diferite studii pentru a le analiza sau pentru a face o meta-analiză, este clar că se vor găsi diferențe. Opusul eterogenității este omogenitatea, ceea ce înseamnă că toate studiile arată același efect.
Este important să rețineți că există diferite tipuri de eterogenitate:
- Clinic: Diferențe în ceea ce privește participanții, intervențiile sau rezultatele
- Metodologic: Diferențe în proiectarea studiilor, riscul de părtinire
- Statistică: Variația efectelor intervenției sau a rezultatelor
Suntem interesați de aceste diferențe deoarece ele pot indica faptul că intervenția noastră ar putea să nu funcționeze în același mod de fiecare dată când este utilizată. Investigând aceste diferențe, puteți ajunge la o înțelegere mult mai mare a factorilor care influențează intervenția și la ce rezultat vă puteți aștepta data viitoare când intervenția este implementată.
Deși eterogenitatea clinică și metodologică este importantă, acest blog se va concentra pe eterogenitatea statistică.
Cum să identificați și să măsurați eterogenitatea
Testul Eyeball
În graficul dvs. forestier, uitați-vă la suprapunerea intervalelor de încredere, mai degrabă decât de ce parte sunt estimările efectului dvs. Este posibil ca faptul că rezultatele se află de o parte și de alta a liniei lipsei de efect să nu vă influențeze evaluarea dacă este prezentă eterogenitatea, dar vă poate influența evaluarea dacă eterogenitatea contează.
Cu acest lucru în minte, uitați-vă la graficul de mai jos și decideți care parcelă este mai omogenă.
Desigur, cea mai omogenă este parcela numărul 1 . Intervalele de încredere se suprapun toate și, în plus, toate studiile favorizează intervenția de control.
Pentru cei cărora le place să măsoare lucrurile în loc să le privească doar din ochi, nu vă faceți griji, există încă câteva metode statistice care să vă ajute să vă însușiți conceptul de eterogenitate.
Testul Chi pătrat (χ²)
Acest test presupune ipoteza nulă că toate studiile sunt omogene, sau că fiecare studiu măsoară un efect identic, și ne oferă o valoare p pentru a testa această ipoteză. Dacă valoarea p a testului este mică, putem respinge ipoteza și este prezentă eterogenitatea.
Pentru că adesea testul nu este suficient de sensibil și excluderea eronată a eterogenității are loc rapid, mulți oameni de știință folosesc o valoare p de < 0,1 în loc de < 0,05 ca limită.
I²
Acest test a fost dezvoltat de profesorul Julian Higgins și are o teorie pentru a măsura gradul de eterogenitate, mai degrabă decât să precizeze dacă aceasta este prezentă sau nu.
Limitele pentru interpretarea lui I² pot fi înșelătoare, deoarece importanța inconsecvenței depinde de mai mulți factori. Un ghid aproximativ de interpretare este următorul:
- 0% până la 40%: ar putea să nu fie important
- 30% până la 60%: eterogenitate moderată
- 50% până la 90%: eterogenitate substanțială
- 75% până la 100%: eterogenitate considerabilă
Pentru a înțelege teoria de mai sus, aruncați o privire la următorul exemplu.
Vezi că valoarea p a testului chi pătrat este 0,11, confirmând ipoteza nulă și sugerând astfel omogenitatea. Cu toate acestea, analizând intervențiile, putem observa deja o anumită eterogenitate în rezultate. Mai mult, valoarea I² este de 51%, sugerând o eterogenitate moderată până la substanțială.
Acesta este un bun exemplu al modului în care testul χ² poate fi înșelător atunci când există doar câteva studii în meta-analiză.
Cum să tratăm eterogenitatea?
După ce ați detectat variabilitatea în rezultatele dumneavoastră trebuie să o tratați. Iată câțiva pași cu privire la modul în care puteți trata această problemă:
- Verificați-vă datele pentru greșeli – Întoarceți-vă și vedeți dacă nu cumva ați tastat ceva greșit
- Nu faceți o meta-analiză dacă eterogenitatea este prea mare – Nu orice revizuire sistematică are nevoie de o meta-analiză
- Explorați eterogenitatea – Acest lucru se poate face prin analiza subgrupurilor sau meta-analiză.regresie
- Realizați o meta-analiză cu efecte aleatorii – Rețineți că această abordare este pentru eterogenitatea care nu poate fi explicată pentru că se datorează întâmplării
- Schimbarea măsurilor de efect – Să spunem că folosiți diferența de risc și aveți o eterogenitate ridicată, atunci încercați Risk Ratio sau Odds Ratio
(1) Fletcher, J. Ce este eterogenitatea și este ea importantă? BMJ 2007; 334 :94
(2) Deeks JJ, Higgins JPT, Altman DG (editori). Capitolul 9: Analiza datelor și efectuarea de meta-analize. În: In: Higgins JPT, Green S (editori). Cochrane Handbook for Systematic Reviews of Interventions Versiunea 5.1.0 . The Cochrane Collaboration, 2011. Disponibil la www.cochrane-handbook.org.
(3) https://www.mathsisfun.com/data/chi-square-test.html
.