学習目標
- 結合気体の法則を学び、適用する。
すべての気体の法則について気づくことの1つは、まとめて、分子には常に体積と圧力が、分母には常に温度があることである。 このことは、圧力、体積、温度を組み合わせた気体の法則を提案できることを示唆している。 この気体の法則は複合気体の法則と呼ばれ、その数学的形式は
となり、気体の三大特性の変化を全て追うことができるようになる。 ここでも、未知数の代数的な解き方(分子で方程式の片側に分離する)、単位(各タイプの2つの類似した変数に対して同じでなければならない)、温度の単位はケルビンでなければならないといういつもの警告が適用される。
例題 ㊙(㊙ページインデックス{1}):
初期体積8.33L、初期圧力1.82 atm、初期温度286 Kの気体が、温度355 K、体積5 Kに同時に変化した。72L。気体の最終圧力はいくらか。
問題解決の手順 |
|
---|---|
「与えられた」情報と問題が「見つけるように」と言っているものを特定することです。” |
与えられた情報: V1 = 8.33 L, P1 = 1.82 atm, and T1 = 286 K V2 = 5.72 L, T2 = 355 K 求めなさい。 P2 = ?atm |
List other known quantities. |
none |
Plan the problem. |
まず方程式を代数的に整理して(V_2 jp) を解きなさい。 Comments(P_2 = \frac{P_1 V_1 T_2 }{T_1V_2}) |
計算する。 |
ここで既知の量を式に代入して解く。 |
結果について考える。 | 最終的には圧力が上昇しましたが、これは気体の2つの性質が変化しているため、予測することは困難だったでしょう。 |
練習問題 \(﹡ˆoˆ﹡)
P1 = 662 torr, V1 = 46.7 mL, T1 = 266 K, P2 = 409 torr, T2 = 371 K, V2とは?答え
105 mL
他の気体の法則と同様に、複合気体の法則の分母にある変数の値を求める場合は、すべての項を掛け合わせるか、複合気体の法則の逆数を取るだけです。 解いている変数が分子にあり、式の片側にすべて単独でなければならないことを忘れないでください。
まとめ
- 混合気体の法則は、気体の圧力、体積、温度に関するもので、気体の圧力、体積、温度に関するものです。
貢献 & 属性
このページは以下の貢献者によるコンテンツから構成され、LibreTexts開発チームがプラットフォームのスタイル、表示、品質を満たすために(局所的または広範囲に)編集を行いました。
-
Marisa Alviar-Agnew (Sacramento City College)
-
Henry Agnew (UC Davis)