Logica simbolica e filosofia
Consideriamo perché la logica simbolica è di particolare interesse per il filosofo. Applicare le tecniche formali della logica a un vago argomento filosofico può aiutare a mostrare chiaramente le parti controverse dell’argomento. Le affermazioni simboliche sono prive di vaghezza e ambiguità. Per esempio, un filosofo sostiene che dalla premessa “Dio è amorevole e onnipotente” può dedurre la frase “Non ci dovrebbero essere terremoti o omicidi o qualsiasi altro male nel mondo”. Alcuni filosofi inizialmente saranno probabilmente d’accordo che questa è una deduzione valida; altri probabilmente non saranno d’accordo. Una ragione del loro disaccordo è che è così difficile dire cosa le due frasi stiano realmente dicendo. Ma se le frasi vengono tradotte in logica simbolica, allora le frasi tradotte saranno precise. Con frasi precise è molto più chiaro se la conclusione segue o no dalle premesse. Se la conclusione non segue, allora sarà più chiaro cos’altro deve essere assunto per far seguire la conclusione. Allora i filosofi possono concentrarsi sul discutere se queste ulteriori assunzioni sono accettabili. Quindi, l’uso della logica simbolica può aiutare (e ha aiutato) a dirigere le discussioni dei filosofi verso i punti cruciali delle loro dispute.
Alcuni filosofi credono che la logica simbolica possa rivelare la struttura di tutte le possibili buone inferenze, e quindi rivelare la struttura scheletrica comune che sta alla base di tutti i processi di pensiero ragionevoli. Bertrand Russell, Ludwig Wittgenstein e altri filosofi del XX secolo hanno sostenuto che esiste un’intima connessione tra queste tre cose: la logica, la nostra mente e la struttura profonda del mondo fisico. Questo tema è discusso in Phil. 154 (linguaggio), Phil. 176 (filosofia anglo-americana del 20° secolo), e Phil. 181 (metafisica).
L’analisi simbolica del nostro linguaggio naturale può rivelare nuove entusiasmanti informazioni sul carattere del linguaggio stesso. Per esempio, tutte le frasi grammaticali dell’inglese, ma nessuna di quelle sgrammaticate, possono essere generate meccanicamente usando un piccolo numero di regole simboliche? Tutte le frasi significative dell’inglese, ma nessuna di quelle senza senso, possono essere generate meccanicamente usando un piccolo numero di regole simboliche? Il tentativo di rispondere a queste domande è un’area attiva della ricerca filosofica contemporanea iniziata da Noam Chomsky al M.I.T. Questo argomento è ripreso in Phil. 154.
La logica ha anche un impatto sulla filosofia in altri modi. Consideriamo questa inferenza apparentemente buona che ha, purtroppo, una conclusione inaccettabile. “Poiché 9 è il numero di pianeti nel nostro sistema solare, e poiché è logicamente necessario che 9 sia maggiore di 5, segue per sostituzione che è logicamente necessario che il numero di pianeti nel nostro sistema solare sia maggiore di 5.” Questa conclusione non è corretta perché il sistema solare avrebbe potuto contenere meno pianeti se si fosse evoluto diversamente. Questo paradosso sulla sostituzione è un problema irrisolto in filosofia.
Infine, la logica simbolica è uno strumento molto utile per chiarire i concetti filosoficamente importanti di significato, verità e prova. Imparerai come chiarire le prove in Phil. 60, ma l’attenzione alla verità dovrà aspettare Phil. 160 (il corso successivo a Phil. 60), e l’attenzione al significato riceve la massima attenzione in Phil. 154.
Logica simbolica e informatica
Ora consideriamo perché la logica simbolica è di particolare interesse per l’informatico. La risposta breve è che l’informatica è solo la logica implementata nell’ingegneria elettrica.
Un’area dell’informatica è l’I.A. o intelligenza artificiale. Un processo di A.I. è un processo attraverso il quale un computer o un robot è in grado di eseguire compiti che, quando sono eseguiti da esseri umani, richiedono intelligenza. Per esempio, i ricercatori di A.I. sperano di costruire una macchina che possa leggere un articolo scritto in cinese e produrne un riassunto in inglese. I ricercatori generalmente credono che fare progressi in questo compito di far sì che un computer usi l’inglese in modo intelligente richiederà una massiccia introduzione nel computer di conoscenze sul mondo esterno al computer. Come faranno i ricercatori a dare tutta questa conoscenza al computer in modo che sia disponibile in modo che il computer possa usarla? Molti ricercatori A.I. credono che la chiave del successo sia tradurre questa conoscenza in logica simbolica piuttosto che nei linguaggi ordinari del computer.
Ecco una citazione del dicembre 1999 di un famoso scienziato informatico, Hans Moravec della Carnegie Mellon University, nella rivista Scientific American:
“L’intelligenza dei robot supererà la nostra ben prima del 2050. In questo caso, i robot scienziati prodotti in massa, completamente istruiti, che lavorano diligentemente, a basso costo, rapidamente e sempre più efficacemente, garantiranno che la maggior parte di ciò che la scienza conosce nel 2050 sarà stato scoperto dalla nostra progenie artificiale.”
I computer sono macchine logiche in due sensi: il loro design elettronico segue principi di base della logica simbolica, e i loro programmi sono essi stessi basati su principi di logica simbolica. Più specificamente, l’informatica è coinvolta con la logica simbolica nei seguenti cinque modi:
(1) Il primo linguaggio di programmazione si è evoluto dal linguaggio della logica simbolica classica.
(2) L’ingegnere elettrico che progetta computer digitali crea le porte e le reti delle macchine sui suoi chip secondo i principi della logica sentenziale, cioè l’algebra booleana.
(3) La logica simbolica è utile per semplificare circuiti elettrici complicati. Le tecniche della logica simbolica sono utilizzate per creare un circuito più semplice che funziona allo stesso modo di un circuito più complicato e più costoso.
(4) La logica simbolica è utile per analizzare i limiti teorici dei computer digitali ideali. Le tecniche di logica simbolica possono essere usate per stabilire quali funzioni un computer può e non può calcolare (in linea di principio, cioè senza limiti sulla dimensione della memoria o sulla quantità di tempo disponibile). Le tecniche possono essere usate per stabilire limiti di velocità per certi tipi di calcoli, e per stabilire se un programma per computer farà in linea di principio correttamente ciò che il suo programmatore intende aver progettato per fare.
(5) Le tecniche di logica simbolica sono usate nei programmi di ragionamento automatico. I programmi di ragionamento automatico possono creare le prove di alcune affermazioni, non semplicemente controllare una prova proposta.
Logica simbolica e matematica
La logica simbolica è di particolare interesse per il matematico perché la logica dei predicati, aumentata da alcuni principi della teoria degli insiemi, è capace di esprimere ogni affermazione matematica senza perdita significativa del suo contenuto. Così le prove e i teoremi di qualsiasi campo della matematica possono essere tradotti in prove e teoremi della logica. Quando i campi della matematica sono rappresentati in questo modo come parte della logica, il logico può vedere più chiaramente l’estensione di quel campo della matematica e vedere i suoi presupposti (come i suoi assiomi). Le procedure automatiche di risoluzione dei teoremi dei logici possono essere (e sono state) applicate per scoprire nuovi teoremi della matematica che i matematici che lavorano da soli non hanno mai scoperto. Inoltre, dopo aver tradotto una teoria matematica in logica simbolica è molto più facile stabilire le risposte a domande come “Questa teoria permetterà la deduzione di una contraddizione?” e “Potrebbe esistere una macchina che possa sempre rispondere correttamente se una data affermazione è un teorema di questa teoria?”
I dettagli delle idee menzionate sopra su computer, filosofia e matematica sono esplorati in dettaglio in altri corsi, e non ci si aspetta che tu sappia molto di computer, filosofia o matematica in questo corso. Questo corso sarà semplicemente un’introduzione, dando le basi della logica simbolica più una panoramica di come questa logica può essere applicata. Questo corso è un prerequisito per Filosofia 160, che continua lo studio della logica simbolica. La logica simbolica è un argomento centrale in Matematica 161; e la logica simbolica è studiata ulteriormente in diversi corsi di informatica nella nostra università.